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a b s t r a c t 

Besides the binary segmentation, many retinal image segmentation methods also produce a score map, 

where a nonnegative score is assigned for each pixel to indicate the likelihood of being a vessel. This 

observation inspires us to propose a new approach as a post-processing step to improve existing methods 

by formulating segmentation as a matting problem. A trimap is obtained via a bi-level thresholding of 

the score map from existing methods, which is instrumental in focusing the attention to pixels of these 

unknown areas. A dedicated end-to-end matting algorithm is further developed to retrieve those vessel 

pixels in the unknown areas, and to produce the final vessel segmentation by minimizing global pixel 

loss and local matting loss. Our approach is shown to be particularly effective in rescuing thin and tiny 

vessels that may lead to disconnections of vessel fragments. Moreover, it is observed that our approach 

is capable of improving the overall segmentation performance across a broad range of existing methods. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Automated analysis of retinal fundus images is gaining pop-

larity in a broader range of clinical specialties including dia-

etic retinopathy, cardiovascular disease, and hypertension [1–3] .

n many clinical applications, it is crucial to extract detailed reti-

al vessel morphology for follow-up vasculature analysis. On the

ther hand, numerous retinal image segmentation methods have

een developed over the years, including both supervised and un-

upervised methods, which have resulted in noticeable progresses.

nfortunately, it is still a challenging problem to extract small ves-

els which are usually thin and blurry, thus difficult to be sepa-

ated from the textural background. 

In this paper, we propose a matting-based approach to extract

hese small retinal vessels with global pixel loss and local mat-

ing loss. We observe that many existing methods produce a score

ap as a by-product, where for each pixel, a nonnegative score is

resented to quantify its affinity to the vascular foreground. This

nspires us to propose an end-to-end approach to boost the per-

ormance of an existing baseline segmentation method. Given an

nput retinal image, a score map is obtained by applying an ex-

sting segmentation method of interest. A bi-level threshold of the

core map gives rise to a trimap representation focusing on these

nknown area pixels that are yet to be considered as part of the
∗ Corresponding authors. 
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essels, while the rest pixels that are clearly either background or

oreground. A dedicated end-to-end matting algorithm is further

eveloped to classify the vessel pixels in the unknown areas and

o complete the final vessel segmentation. 

The main contributions of our approach are three-fold. First, a

eep learning framework is proposed to improve the vessel seg-

entation performance of existing methods, where the segmenta-

ion problem is transformed into a matting task. Second, a new

oss function is proposed in vessel segmentation, in which the

lobal pixel loss and local matting loss are combined to handle

he ambiguous pixels that often reside around the boundary of

mall vessels. Empirical evidence suggests our approach is partic-

larly effective in segmenting small vessels. Third, it is capable of

mproving the results of a wide range of existing methods, being

ither supervised or unsupervised. When applying to the state-of-

he-art methods such as DRIU [4] and Kernel boost [5] , our ap-

roach still yields better results. Moreover, working with the unsu-

ervised methods such as MSLD [6] that usually performs inferior

o the supervised counterparts, our approach helps to significantly

oost the performance to a level that is comparable with the best

upervised methods. In addition to the typical fundus images, our

pproach also works well with images acquired by other retinal

maging instruments such as scanning laser ophthalmoscope. 

. Related work 

Retinal image segmentation methods can be roughly cate-

orized into two types: unsupervised and supervised methods.

https://doi.org/10.1016/j.patcog.2019.107068
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.107068&domain=pdf
mailto:huiqili@bit.edu.cn
mailto:lcheng5@ualberta.ca
https://doi.org/10.1016/j.patcog.2019.107068
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R  
Comparing with unsupervised methods, in general supervised

methods deliver better segmentation results. However, it relies on

a set of ground-truth training examples for constructing a dedi-

cated model. Meanwhile, unsupervised methods tend to execute at

a faster speed; they are feasible to be deployed on new datasets

when annotations are not available. 

More specifically, unsupervised methods are designed by

encoding the domain knowledge to best capture retinal vessel

characteristics. In [7,8] , mathematical morphological operators

are engaged in identifying the vessels. These vessels are then

spatially enhanced by linear filters and curvature-based analysis.

To facilitate the proper delineation of vessel boundaries, one may

consider to adopt Hessian-based techniques [9,10] to incorporate

the second order derivatives or eigenvalues. In the meantime,

image filtering based methods have also been widely deployed in

retinal vessel segmentation [11–15] . In [11] , both vessel centerlines

and vessel segments are extracted from an input image. The cen-

terline is extracted by the first order derivative of a Gaussian filter,

while a multidirectional morphological top-hat operator is utilized

to segment the vessels. Chaudhuri et al. [12] develop a bank of

2-D matched filters with twelve directions for detecting vessels

based on the Gaussian-smoothed shape of vessel cross-sectional

profile. Wang et al. [13] further develop a matched filter that

combines multiwavelet kernels to distinguish vessels from lesions

or noise background. The final vessel segmentation is attained

after a follow-up adaptive thresholding. In [14] , vessel areas

obtained from matched filter response are further identified by

applying different threshold probes. A matched filter is applied to

enhance the vessels with threshold operator to obtain the binary

vascular trees in [16] and the keypoints are also detected after the

reconstruction of vascular trees. Recently, the B-COSFIRE (Bar Com-

bination Of Shifted Filter Responses) filter is proposed by [15] to

detect vessels by evaluating the empirical mean of a bank of

Different-of-Gaussian filters. Authors in [6] consider the line de-

tector responses at different scales collectively to deliver the final

segmentation. Vessel tracking or tracing is another way to segment

retinal vessels. The approach of [17] is based on a Bayesian method

with maximum a posteriori (MAP) formulation to locate vascular

structure by connecting sampled edge points in a tracking fashion.

A follow-up work by [18] combines MAP criterion with multiscale

line detection to exploit two-dimensional vessel information.

In [19] , retinal vessels are further separated into arteries and veins

by keypoint detector and graph search algorithm. Meanwhile,

the authors in [20] consider to extract vessels by means of an

orientation-aware detector to capture the locally oriented and

linearly elongated structural property of vessels. An active contour

model is also proposed by [21] , to take advantage of the local

phase enhancement map to provide a reliable vessel map, as

well as the region-level information of pixel intensities to exclude

possible outliers. In [22] , the authors transfer the 2D image to a

Lie-group space of positions and orientations. The vessels are then

extracted by applying multi-scale second-order Gaussian filters. 

Supervised methods, on the other hand, are data-driven in

which a set of well-annotated training examples are required by

default. This often results in better segmentation performance in

practice. As one of the early works, Staal et al. [23] consider a

two-step method by first obtaining the vessel features from a ridge

detector, then utilizing a K-nearest neighbor classifier to predict

vessel pixels. In [24] , authors examine features from pixel inten-

sity and Gabor wavelet responses over scales, which are subse-

quently fed into a Bayesian classifier for vessel segmentation. An

ensemble system of bagged and boosted decision trees is proposed

in [25] to produce segmentation result based on a collection of

features including the filtered responses and morphological oper-

ations. Authors in [5] introduce a gradient boosting approach to

learn discriminative convolutional filters. Based on segmentation
esults of [5] , the authors of [26] propose a learning based itera-

ive scheme to detect and connect weak vessel fragments by la-

ent classification trees. A discriminatively trained fully connected

RF model is introduced in [27] , where segmentation is formulated

s inferring the maximum a posteriori assignment in a conditional

andom field. In [28] , a set of structural contextual features are

xtracted and fed into gradient boosting trees for pixelwise clas-

ification. Remarkable results have been attained recently by the

eep learning methods. In [29] , a U-shape network structure has

een studied that utilizes the short-cut connection as an expend-

ng path to produce an image-to-image segmentation. This net-

ork structure, also referred to as U-net, has since been adopted

n a wide range of medical image analysis tasks. Li et al. [30] re-

ard the segmentation task as a cross-modality transformation task

nd develop a neural network based prediction model. Inspired

y [31,32] , the authors of [33] design convolutional neural net-

orks (CNNs) with side-output layers to learn feature representa-

ions. It also contains a conditional random field layer to take into

ccount of global pixel correlations. DRIU [4] considers a multi-

ask learning approach addressing both vessel segmentation and

ptic disc detection in a single CNN model. The work of [34] per-

orms supervised segmentation of un-annotated new dataset us-

ng cross-domain synthesized training images. This is achieved by

dopting the generative adversarial networks to synthesize retinal

mages having the textural appearance of the target images while

aintaining the vessel structure annotations from existing bench-

ark datasets. 

Image matting is a problem that is closely related to segmen-

ation. Originally developed in the film-making industry, its appli-

ations mainly focus on looking at humans and natural scenes. As

escribed in [35] , there is an alpha matte channel that linearly in-

erpolate between the foreground and the background, focusing on

he unknown regions of the trimap. Specifically, a pixel of the input

mage, x i , is assumed to be a convex sum of the background value

 i and the foreground value f i using the alpha channel m i ∈ [0, 1]: 

 i = m i f i + (1 − m i ) b i . (1)

 Bayesian matting algorithm is proposed in [36] , which utilizes

 set of local Gaussians to learn the distributions of local fore-

round and background. A widely used method is proposed by

37] , where a cost function is derived from local smoothness as-

umptions on foreground and background, and the optimal matte

s attained by solving the incurred linear system of equations. KNN

atting [38] applies K-nearest-neighbor matching in the feature

pace to approximate nonlocal neighborhoods without sophisti-

ated assumptions and advanced sampling strategies. Deep learn-

ng models have also been developed in recent years for getting

he alpha matte [39–41] , in which compositional loss is utilized to

olve the alpha matting problem with convolutional network struc-

ures. 

. Our approach 

The main aim of our approach is to improve the segmenta-

ion results of the existing segmentation methods with a score

ap of the input retinal image. Fig. 1 (a) illustrates our proposed

ipeline. First, the image segmentation problem is transformed

nto a closely related matting problem to focus on segmenting

he unknown regions. This requires a trimap which is obtained by

i-level thresholding of the score map. It is then passed through

n end-to-end matting network to produce the final foreground

atte. 

.1. Transforming to image matting 

More formally, let us denote the RGB retinal image as x ∈
 

W ×H×3 , the segmentation ground truth as y ∈ {0, 1} W × H , the
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Fig. 1. (a) Flowchart of our approach. Left panel can be regarded as testing stage operations, while the boxed right panel displays two elements of our loss function that play 

a key role in learning the matting function M ξ during the training stage. (b) Details of our encoder-decoder matting network structure. A dense U-net network structure, 

where each 3D block corresponds to a specific layer of feature maps; The yellow-color blocks represent the feature maps copied over from the encoder counterpart. See text 

for details. 
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core map from baseline method as s ∈ [0, 1] W × H . Here W and

 are the image width and height, respectively. The correspond-

ng trimap is t ∈ {0, 0.5, 1} W × H , which is obtained by applying bi-

evel thresholds γ l and γ h on the score map s , as presented in

ig. 2 . The trimap t contains three types of pixels: The 0-valued

nd 1-valued pixels are obtained by the bi-level thresholds < γ l 

nd > γ h , respectively; the 0.5-valued pixels are in the unknown

egion, which corresponds to those pixel locations indexed by i sat-

sfying γ l ≤ s i ≤γ h for score s i of pixel i . 

In preparing the trimap, we have the following assumption

egarding the two thresholds, γ l and γ h : the two thresholds

re set to be sufficiently low and high values on the score map

espectively, to ensure the existence of minimum amount of false

egatives or missings, if not zero, at this starting stage. In image

atting terms, these pixels corresponds to the so-called definite

ackground and definite foreground , respectively. Note it is accept-

ble to introduce additional false positives, which in our context

re nothing more than a few extra pixels in the unknown areas.

mpirically this assumption holds well for most existing segmen-

ation methods. The big vessels including the main trunks grown

ut of the optic disk tend to be highly ranked in the score map,

hile the majority background pixels attain very low scores. Con-

equently they are readily thresholded as either the definite fore-

round with value 1 in the trimap, or the definite background with

alue 0. The main uncertainly lies on the small vessels or weak

ignals around the vessel boundaries – they usually fall under the

nknown regions with value 0.5 in the trimap, and these pixels

re precisely the places where our attention should be focused on.
Now, we have obtained the aforementioned trimap contain-

ng three types of areas: definite background, definite foreground,

nd unknown region; they are displayed in Fig. 2 as green, red,

nd blue pseudo-colors, respectively. The follow-up matting pro-

ess [35] thus concentrates on the blue-color unknown regions

ontaining small vessels and blurry vessel boundaries, to ex-

ract meaningful foreground vessel structure. In other words, it is

o learn a ξ -parameterized function mapping of M ξ ( x , t ) → m ∈
 

W ×H that takes as input a retinal image x and its trimap t , to

redict a matte m . The parameters ξ denotes the neural network

eights to be learned at the training stage. The final segmenta-

ion result ˆ y is thus obtained by applying a global threshold τ as

ˆ  i = 1 ( m i ≥ τ ) for each of the pixels indexed by i . Here 1 is the

ndicator function, m i and ˆ y i refer to the matte and segmentation

alues at pixel i , respectively. To deal with this problem, an end-

o-end matting pipeline is proposed as in Fig. 1 (b). The matting

etwork takes as input the color retinal image and the trimap pro-

uced by a baseline segmentation method. In particular, as high-

ighted in right panel of Fig. 1 (a), a local matting loss is introduced

ogether with a global pixel loss function, which plays a key role

or our approach in delivering superior segmentation performance.

e will describe these aspects in the following subsections. 

.2. Model structure 

As shown in Fig. 1 (b), our matting model is a ξ -parameterized

eep convolutional neural net function M ξ . It follows the U-net

tructure of [29] with dense concatenations from the encoder
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Fig. 2. A trimap illustration. (a) Original retinal image x . (b) Zoomed-in view of selected area. (c) The score map from an existing segmentation method. (d) The corresponding 

trimap obtained by applying bi-level thresholds of γ l and γ h . s i indicates the i th pixel value in the score map s . γ l and γ h are the low and high thresholds, respectively. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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a  

H  
layers to the corresponding decoder layers. The input to our net-

work is the concatenation of retinal image x and trimap t , while

the output is the segmentation matte m . The encoder part of our

model is stacked by several convolutional layers to downsample

the feature maps to a vector code. The multiple convolutional

layers are responsible for extracting salient features and capturing

from local to global representations. The decoder part, on the

other hand, employs subsequent transposed convolutional (also

called deconvolutional) layers to reconstruct a sequence of feature

maps from the code, and produce the segmentation matte in the

end. The concatenation of feature maps between the convolutional

layer and their counterpart deconvolutional layers are important

in retaining the global structural information. This operation also

allows the back-propagating gradients to pass directly from the

decoder layers to the encoder ones, to avoid possible issues of

gradient vanishing. In our network model, a kernel size of 3 is

adopted for both convolutional and deconvolutional layers with a

stride of 2 for downsampling and upsampling purposes, respec-

tively. Detailed information such as number of filters is described

in Fig. 1 (b). A batchnorm layer and relu activation function are

followed after each convolutional layer. At the last layer, the

sigmoid activation function is used to squash the output values

between zero and one. 

3.3. Loss function 

During training, the loss function plays an essential role of

learning the optimal parameters ξ . For each training example x ,

a pair of foreground and background ground-truths, f and b , are

constructed from the segmentation ground-truth y , as f i = y i · x i 
and g i = (1 − y i ) · x i . respectively, for each pixel indexed by i . Now,

to train the encoder-decoder network M ξ , our loss function con-

sists of the following two parts, the global pixel loss and the lo-

cal matting loss. The global pixel loss takes into account the pixel-

wise squared difference between the ground-truth y and predicted

matte m : 

l pix ( y , m ) = 

∑ 

i 

( y i − m i ) 
2 
. (2)

This loss helps to make a rough segmentation of the vessels fore-

ground from the background, which may lead to an overall rea-

sonable result from the viewpoint of a whole image. It nonetheless
erforms less effective on small vessels. This is to be expected, as

he set of big vessel pixels constitutes the majority of the fore-

round, thus they dominate the final loss function value. As a re-

ult, it may ignore the errors incurred from wrongly segmenting

hose small vessels, which are often weak signals that are more

ifficult to be distinguished from the background. 

Inspired by the matting definition, a local matting loss is de-

ived from (1) , which focuses more on the large errors introduced

ocally, by taking into account the composition law formed in the

mage matting process. As expressed in Eq. (1) , an input image is

ecomposed pixelwise as a convex sum of the foreground ground-

ruth f and background ground-truth b by the segmentation matte

 . Then our loss is defined as the squared difference between the

eal input retinal image x and the assemble counterpart of image

oreground f and image background b following the composition

aw in a pixel-by-pixel manner: 

 mat ( y , m ) = 

∑ 

i 

( f i · m i + b i · (1 − m i ) − x i ) 
2 
. (3)

oreover, from the aforementioned assumption, matting mistakes

n m usually occur within the unknown regions of trimap t . Thus

ur proposed loss module could focus attention to these unknown

egions of small vessels and blurred boundaries, as: 

 mat ( y , m ) = 

∑ 

i 

1 (s i == 0 . 5) · ( f i · m i + b i · (1 − m i ) − x i ) 
2 
. (4)

inally, our loss function is defined as 

 ( y , m ) = ωl pix + (1 − ω) l mat . (5)

ere ω is a trade-off constant, which is empirically set to 0.5 in

his paper. With the help of both global and local losses, our model

s adaptable to properly segment both the main vessel trunks and

he small vessel fragments. 

. Empirical experiments 

.1. Benchmark datasets and implementation details 

Empirically we have examined on three retinal fundus im-

ge benchmark datasets. They are DRIVE [23] , STARE [14] , and

RF [42] . DRIVE contains 40 color retinal images with a FOV of
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Table 1 

Quantitative segmentation evaluation results on the benchmark datasets of DRIVE, STARE and HRF. Baseline segmentation methods include supervised learning meth- 

ods: Kernel Boost [5] , DRIU [4] , as well as unsupervised method MSLD [6] . Other state-of-the-art methods are also considered, including FC-CRF [27] , BCOSFIRE [15] , 

LCMBoost [26] , DeepVessel [33] and LAD-OS [22] . Results are reported in F1-score (%), Recall (i.e. Sensitivity) (%), Precision (%) and Specificity (%). 

Kernel Boost DRIU MSLD 

FC-CRF BCOSFIRE LCMBoost DeepVessel LAD-OS 
Baseline Ours Baseline Ours Baseline Ours 

DRIVE F1-score 75.88 81.13 81.62 82.29 72.98 81.15 78.57 78.73 76.00 79.26 78.22 

Recall 77.23 80.78 82.46 83.29 66.11 81.30 78.97 78.67 74.58 78.65 76.50 

Precision 74.58 81.48 80.80 81.31 81.44 81.05 78.54 78.87 78.62 79.82 80.12 

Specificity 96.79 97.76 97.61 97.67 98.58 97.68 97.92 97.98 98.00 98.11 98.19 

STARE F1-score 77.30 79.16 82.56 83.51 77.74 80.66 78.74 78.42 78.72 79.12 80.11 

Recall 75.94 78.03 83.34 84.33 74.15 81.13 77.73 79.18 75.74 79.50 80.27 

Precision 78.71 80.32 81.79 82.71 81.70 80.24 80.45 77.78 83.02 78.79 80.04 

Specificity 98.33 98.48 98.50 98.57 98.63 98.37 98.50 98.13 98.67 98.24 98.37 

HRF F1-score 75.84 77.31 76.93 78.13 58.56 77.29 71.80 70.30 - - 77.47 

Recall 74.34 76.45 77.11 78.09 53.50 76.14 72.12 76.32 - - 76.51 

Precision 77.45 78.22 76.78 78.20 64.88 78.53 72.14 65.34 - - 78.50 

Specificity 98.20 97.95 98.06 98.18 97.53 98.01 97.63 96.59 - - 98.26 
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5 ◦ at 584 × 565 pixel resolution. We follow the standard partition

f DRIVE and split it into the training and the testing sets, each

ontaining 20 images. STARE includes 20 images captured at 35 ◦

OV with a resolution of 700 × 605 pixels. Following the conven-

ion, the first 10 STARE images are used for training, and the rest

re for testing. HRF contains 45 high resolution images with size

f 3304 × 2336, where we adopt a train/test split of 22/23 images,

espectively. A separate model is trained on different dataset but

ith the same model structure and training settings. 

Our approach is implemented in Python, and the Tensorflow li-

rary is used for building the proposed matting neural net. The

raining data are augmented with rotations over every 45 ◦, as well

s horizontal and vertical flipping for larger training set. Through-

ut experiments, the network parameters are updated by Adam

ptimizer [43] with learning rate of 0.005. The kernel size of con-

olutional layer is set to 3 based on the parameter sensitivity

tudy. The lower and upper thresholds are set to γl = 0 . 2 and

h = 0 . 9 , respectively, which are found sufficient empirically to en-

ure minimum false negatives in constructing the trimap. Train-

ng time on DRIVE is around 25 min, and prediction on one im-

ge takes 0.5741 s. All empirical computation is carried out on a

esktop PC with an Intel iCore 7 CPU, 16GB main memory, and a

itan-X GPU. 

To demonstrate the effectiveness of our approach in boosting

he performance over a range of existing methods, we have consid-

red three state-of-the-art segmentation methods as the exemplar

aselines. They include two supervised methods, Kernel Boost [5] ,

nd DRIU [4] , as well as an unsupervised method, MSLD [6] . For

hese baselines, their original implementations are used. 

.2. Segmentation results 

This section is to examine the segmentation performance on

he full image level, which evaluates the overall performance in-

luding both the main trunks and the fine vessels. As mentioned

bove, three baseline methods ( i.e. DRIU, Kernel Boost and MSLD)

re engaged to provide the initial score maps for our approach. 

Table 1 displays the quantitative results of these baseline meth-

ds ( i.e. Baseline), as well as the corresponding results after ap-

lying our approach ( i.e. Ours). To characterize the vessel segmen-

ation performance, four evaluation metrics are considered, includ-

ng the F1-score, sensitivity, precision, and specificity. The metric of

ensitivity is also referred to as recall . F1-score delivers an overall

erformance summary, while the other three can form two groups

f paired metrics. One pair of metrics is precision and recall, and

nother pair is sensitivity and specificity. These two pairs of met-
ics can provide detailed performance indications from two differ-

nt perspectives. 

Moreover, to better connect our performance on the benchmark

atasets to the literature, the results of a number of additional

tate-of-the-art segmentation methods have also been included,

hich are FC-CRF [27] , BCOSFIRE [15] , LCMBoost [26] , DeepVes-

el [33] and LAD-OS [22] . Here, the reported performance of most

omparison methods (FC-CRF, LCMBoost, DeepVessel, LAD-OS) are

btained by evaluating the results provided by authors of the re-

pective papers. As to BCOSFIRE, its performance is evaluated by

xecuting the original implementation with default parameters on

ur side. 

Results based on the Kernel Boost baseline are shown in 3rd

o 4th columns, while those of DRIU are displayed in 5th and 6th

olumns and those of MSLD are presented in 7th and 8th columns.

pecifically, under the DRIU-tagged columns, Baseline is from the

riginal DRIU model, while Ours report our results with initial

rimaps based on these DRIU score maps. Take the DRIU baseline

n DRIVE dataset as an example, which achieves a rather high F1-

core of 81.62%, while our approach still improves to 82.29%. No-

ably, the recall rate of our approach gains an additional 0.83% over

hat of baseline, suggesting the capability of extracting more ves-

el pixels. At the same time, its precision rate is also increased

rom 80.80% to 81.31%. This clearly demonstrates the overall im-

rovement from the baseline. Similar observations are also drawn

rom the STARE and HRF benchmarks, where we usually witness

ains from most of the four metrics after adopting our approach.

urthermore, for the Kernel Boost baseline, our approach produces

ore visible gains: 5.25% and 1.86% for DRIVE and STARE, respec-

ively. This we attribute to the large performance deficit of the

ernel Boost baseline from the DRIU baseline, which achieves only

5.88% vs. 81.62% of DRIU. For the unsupervised baseline of MSLD,

 F1-score of 72.98% is obtained. And our approach is able to lift

p to 81.15%. Overall, our approach seems capable of enhancing the

erformance over various baselines with score map, being super-

ised or unsupervised. 

More detailed information is provided from the precision-recall

urves of Fig. 3 (a–c) are the PR curves attained on DRIVE, STARE,

nd HRF datasets, respectively. Our approach outperforms the

aseline methods, especially in the range of [0.7, 0.9] over both

recision and recall axes, which is the central important zone in

ost applications. The zoomed-in view of this region is also dis-

layed in figures. The clear margin between the dotted lines over

he solid lines of the same colors demonstrate that our approach

ndeed helps in advancing the performance over the baselines, not

nly on a single point, but also on the PR curve. 
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Fig. 3. (a–c) are the three plots of precision-recall curves about the competing segmentation methods, for DRIVE, STARE and HRF datasets, respectively. To demonstrate the 

effectiveness of our approach, we consider as baselines three state-of-the-art methods of DRIU [4] , Kernel Boost [5] , and MSLD [6] , with their results presented in solid lines 

of specific colors. Results of our approach augmented with the baselines are also provided in dotted lines of the same colors. For clarity, we also show the zoomed-in view 

focusing on the important area ( i.e. [0.7, 0.9] of both axes) of the PR curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

t  

m  

p  

t  

p  

s  

l  

i  

i  

o  

m  

b  

c

 

T  

o  

t  

m  

e  

a  

u  

a  

a

4

v

 

c  

m  

e  
Fig. 4 displays the visual segmentation results. Original retinal

images are presented in the first column. It is followed by the

baseline results in second column, our results in the third column,

and the ground-truths in the fourth column. The zoomed-in views

are displayed beside the segmentation results in (b-d) for more lo-

cal details. It is observed that in general our approach preserves

more fine details along the boundaries and capture more small

vessels than the counterpart baselines. Moreover, different from

the DRIU baseline, the Kernel Boost baseline tends to falsely de-

tect more of the background pixels as the foreground, these false

alarms subsequently lead to a low precision. In this situation, our

approach is shown to not only capture more small vessels, but also

have much less of these false alarms, which results in a visually

cleaner segmentation map. This observation is also quantitatively

supported by Table 1 , where higher values of both precision and

recall are achieved by our approach. 

To put our segmentation results into perspective, we also

compare with other retinal vessel segmentation methods. Among

all these competing methods, our DRIU-based approach achieves

the best results with F1-score of 82.29%. Consider Kernel Boost

method: it has a F1-score of 75.88% on DRIVE, which falls behind

the 78.57% of FC-CRF . Our Kernel Boost-based approach brings up

the performance to 81.13%, overpassing that of FC-CRF by a large

margin. It is worth mentioning that this improvement is obtained

with a good balance between precision and recall as is reflected

in Table 1 . These observations are also held true for the other two

benchmarks, STARE and HRF. 

4.3. Ablation tests 

To further examine the advantage of the proposed loss terms,

we also carry out the ablation tests on the DRIU baseline and

the DRIVE dataset. Table 2 displays the quantitative results of the
Table 2 

Ablation tests where results are produced by m

the DRIU baseline and the DRIVE benchmark da

sidered here include F1-score (%), Recall (i.e Sens

F1-sc

Baseline 81.6

Ours with only the global pixel loss 81.8

Ours with only the local matting loss 81.5

Ours with both loss terms 82.2
odels trained on different loss terms. We observe that models

rained with only one loss term can hardly boost the baseline

ethod. We start with the model trained with only the global

ixel loss. It has a F1-score of 81.89%, a slight 0.27% increase over

he baseline performance. In the meanwhile, the recall rate im-

roves around 0.5%, which comes at a cost of decrease in preci-

ion of 0.43%. Similarly, the model trained with only the matting

oss attains a much higher recall score of 84.52%, and gains 2.06%

mprovement. On the other hand, more wrong detections are tak-

ng place and lead to a larger decrease of precision. The F1-score

f 81.53% is slightly worse comparing to the baseline. The trained

odel is able to achieve the best F1-score of 82.29%, with a more

alanced precision and recall values when both loss terms are in-

orporated 

We also study the influence of thresholds of bi-level trimap.

able 3 displays the experimental tests with different thresholds

n DRIVE dataset and DRIU baseline method. We can observe from

he table that such pairs of γ l and γ h can improve the perfor-

ance of baseline method. One extreme situation is also consid-

red, in which γl = 0 and γh = 1 . When γl = 0 , γh = 1 , values of

ll the pixels are 0.5 and the whole image is considered as the

nknown region. In such situation, our approach can still produce

 satisfied result with F1-score of 80.92. In our experiments, we

dopt γl = 0 . 2 and γh = 0 . 9 based on this parameter study. 

.4. Segmentation performance evaluation on small vessels vs. big 

essels 

Empirically it has been observed that although big vessels in-

luding the main trunks are relatively easy to be dealt with, seg-

enting small vessels is always a challenging issue. The above

valuation on the whole image level demonstrates the superior
odels trained with different loss terms on 

taset. Quantitative evaluation metrics con- 

itivity) (%) and Specificity (%). 

ore Recall Precision Specificity 

2 82.46 81.31 97.61 

9 82.94 80.88 97.60 

3 84.52 78.85 97.23 

9 83.29 83.34 97.67 
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Fig. 4. Visual exemplar results of the baseline methods and our approach. The first panel is the results of the DRIU baseline and ours on DRIVE and STARE. Similarly, the 

second panel displays the results of Kernel Boost and ours, while the last one shows the results of MSLD and ours. See text for details. 
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Table 3 

Parameter sensitivity tests where results are produced by models 

trained with different thresholds of bi-level ( γ l / γ h ) trimap on the 

DRIU baseline and the DRIVE benchmark dataset. Quantitative evalua- 

tion metrics considered here is F1-score (%). 

γ l / γ h 0.1 / 0.8 0.2 / 0.8 0.1 / 0.9 0.2 / 0.9 0 / 1 

F1-score 81.89 81.92 81.87 82.29 80.92 

s  

l

 

a  
erformance of our approach. Here we further examine how our

pproach performs on these small vs. big vascular structures. 

This calls for a new segmentation ground-truth annotation such

hat the vessel pixels are categorized into either small or big ves-

els. In this paper, we utilize the following automated process to

enerate these annotations. We first utilize morphological opening

peration which engages a disk structure element with a radius of

.5 to extract small vessels from the segmentation ground-truths.

he connected pixels with area larger than 100 pixels are then

emoved from the remaining segments. The segmentation map is

urther cleaned by discarding regions smaller than 8 pixels. Empir-

cally this automatic pipeline can produce satisfactory small vessel

xtraction results. Two exemplar annotated segmentation maps of
mall vessels are presented in Fig. 5 , where blue refers to the col-

ection of small vessel pixels, black represents the big ones. 

Table 4 quantitatively summarizes the results of three baselines

nd ours on small vs. big vessels. Note the numbers here are not
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Fig. 5. Two exemplar segmentation ground-truths of small vs. big vessels. Here blue represents the small vessel pixels, while black shows the big vessel pixels. See text for 

details. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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to be directly compared with those in the other sections. For large

vessels, our approach leads to slightly better performance. More

significant gains over the baselines are evident from the experi-

ments of small vessels, that include not only the overall F1-score,

but also the individual precision and recall rates. The increase of

the recall rates is particularly prominent, which demonstrates a

strong capability in retrieving those more challenging foreground

vessel pixels. The results of Table 4 suggest that our approach with

the proposed loss function is good at restoring the fine vessels, as

is visually presented in Fig. 4 . 

4.5. Evaluation of vessel structure using the CAL metric of [44] 

So far, we have considered several evaluation metrics includ-

ing F1-score, recall, precision, and specificity. These metrics are

based on pixel-wise comparison between the segmentation map

and the corresponding ground-truth, which are criticised by some

works including [44] as not matching well with the human quality

perception in delineating the vessel trees. Instead, one may con-

sider the connectivity-area-length (CAL) score [44] that has been

also considered in e.g. [45,46] as an alternative evaluation metric

of vessel segmentation. The CAL score contains three components:

C is the vessel connectivity; A refers to overlapping area between
Table 4 

Quantitative evaluation on small vs. big vessels over baselines and ours on DRIV

methods of Kernel Boost [5] and DRIU [4] . Results are reported in F1-score (%), R

Kernel Boost 

Baseline Ours 

Small vessels DRIVE F1-score 46.59 55.46 

Recall 48.37 57.22 

Precision 45.10 54.02 

Specificity 98.56 98.80 

STARE F1-score 48.50 51.98 

Recall 50.08 51.64 

Precision 47.95 52.70 

Specificity 99.43 99.50 

Big vessels DRIVE F1-score 86.61 88.29 

Recall 86.32 87.67 

Precision 86.98 88.99 

Specificity 98.80 98.99 

STARE F1-score 83.79 84.85 

Recall 79.85 82.28 

Precision 88.33 87.77 

Specificity 99.27 99.23 
egmented image and ground-truth; and L represents the length

f the extracted vessel. Finally, it is summarized by a single CAL

core, which is computed by the production of these three compo-

ents. The value of all these values is within the range of [0, 1],

nd the higher the better. 

Table 5 thus provides a quantitative evaluation in terms of the

AL metric over the well-known benchmarks of DRIVE and STARE.

t is observed that our approach excels in all the three distinct as-

ects of C, A, and S, as well as the final CAL score. The better per-

ormance in C suggests that the vessels extracted by our approach

ontains less isolated fragments. The higher values of A and L in-

icate better detection of vessels in regard to both region area and

essel skeleton length. For example, the DRIU baseline achieves an

verall CAL score of 0.8205 on DRIVE, a result better than the Ker-

el Boost baseline. Meanwhile, our DRIU-based approach further

dvances the performance to 0.8471. 

.6. Evaluation on a different imaging modality 

In addition to the fundus cameras, empirical experiment is

lso carried out on a different imaging device, the scanning

aser opthalmoscopy, also known as SLO. More specifically, the

OSTAR [47] dataset is considered, which contains 24 images taken
E and STARE datasets. The baselines include the state-of-th-art supervised 

ecall (i.e. Sensitivity) (%), Precision (%) and Specificity (%). 

DRIU MSLD 

Baseline Ours Baseline Ours 

57.24 59.75 56.04 57.24 

61.61 64.29 58.81 61.61 

53.61 55.99 53.67 53.61 

98.70 98.77 98.70 98.75 

61.46 61.83 49.66 56.95 

66.62 67.43 51.37 60.02 

57.21 57.55 49.57 54.46 

99.47 99.47 99.46 99.47 

88.57 88.81 82.66 88.01 

89.57 89.71 73.69 89.36 

87.70 87.99 94.39 86.76 

98.83 98.86 99.59 98.73 

87.06 87.85 84.25 85.79 

86.13 86.65 77.45 84.18 

88.04 89.10 92.57 87.55 

99.20 99.27 99.58 99.17 
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Table 5 

Performance evaluation measured by the connectivity-area-length (CAL) score of [44] . See text for details. 

Method C A L CAL 

DRIVE Kernel Boost Baseline 0.9903 0.8501 0.7697 0.6485 

Ours 0.9971 0.9248 0.8598 0.7933 

DRIU Baseline 0.9962 0.9377 0.8780 0.8205 

Ours 0.9969 0.9476 0.8964 0.8471 

MSLD Baseline 0.9687 0.8685 0.7847 0.6614 

Ours 0.9968 0.9245 0.8581 0.7913 

STARE Kernel Boost Baseline 0.9905 0.8610 0.8103 0.6966 

Ours 0.9970 0.8810 0.8432 0.7438 

DRIU Baseline 0.9943 0.9184 0.8829 0.8068 

Ours 0.9977 0.9306 0.9114 0.8466 

MSLD Baseline 0.9795 0.8774 0.8199 0.7088 

Ours 0.9966 0.9054 0.8734 0.7897 

Fig. 6. Visual exemplar results of baseline methods and our approach on IOSTAR dataset. Rows from top to bottom display three baseline respectively. 

Table 6 

Quantitative evaluation on IOSTAR dataset acquired by SLO imaging (i.e. not 

the fundus imaging). Here the Kernel Boost and DRIU baselines are considered. 

Results are reported in F1-score (%), Recall (i.e. Sensitivity) (%), Precision (%) 

and Specificity (%). 

Kernel Boost DRIU MSLD 

Baseline Ours Baseline Ours Baseline Ours 

F1-score 75.14 76.69 78.80 79.31 71.32 76.88 

Recall 73.60 76.70 80.28 80.68 68.68 77.25 

Precision 76.86 76.81 77.44 78.02 74.37 76.55 

Specificity 97.84 97.73 97.72 97.80 97.70 97.70 
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ith a FOV of 45 ◦ and an image size of 1024 × 1024. Here the

rst 12 images are employed as the training set, with the rest

erving as the testing images. Table 6 displays the quantitative re-

ults, where our approach is shown to also improve over the three

ifferent baselines, Kernel Boost, DRIU and MSLD. Quantitative

omparisons with the baseline results are displayed in Fig. 6 , the

mprovement over the small vessels are particularly noticeable. 

. Conclusion and outlook 

In this paper, we present a new approach to improve exist-

ng retinal image segmentation methods. Our approach transforms

he segmentation problem into a matting task with a trimap. It is
chieved by the proposed local matting loss and global pixel loss

s well as the matting network. Experiments on different datasets

emonstrate the effectiveness of our approach that works partic-

larly well in delineating small vessels using the proposed local

atting loss. Our approach also works well with different baseline

ethods, which provides a wide application prospect. In addition

o widely-used fundus image benchmarks, our approach is also

emonstrated to work well with the SLO images from the IOSTAR

enchmark. Looking forward, we would like to continue working

ith eye angiography images, as well as 3D OCT images. 
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